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INTRODUCTION

The shortest path problem arises in a variety of disciplines and hence has received
a great deal of attention in the literature. [For a recent review and analysis, see
(1) and (2).] In most of this work, however, little attention has been given to the
particular measure of “distance” that is used. Indeed, the terms “distance”, “cost”,
and “time” are often used interchangeably.

Incorporating both time and cost need not complicate the problem at all –
when the value of time is fixed, for example, the “length” of a path is simply a
linear combination of travel time and direct costs incurred on the path. However,
in many transportation applications, it is unreasonable to assume that people have
a fixed value of time. Indeed, most drivers place almost no value on saving small
amounts of time but attach much more importance to greater amounts of time
(3). Though at first glance this seemingly trivial observation might not appear
to be problematic, it serves to invalidate most existing algorithms for solving the
shortest path problem. Specifically, it results in violations of Bellman’s Principle
of Optimality (4).
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Figure 1: Simple Network with Nonadditive Path Costs

To illustrate the impact of a nonlinear cost function on the shortest path prob-
lem, consider the 3-node, 3-link network shown in Figure 1, where the first num-
ber next to each link represents the time and the second indicates the toll. Now,
suppose that the aggregate cost on a path is given by the time squared plus tolls.
Observe that the cheapest path between nodes1 and3 uses arcsB andC. (The
total cost on this path is $129 vs $148 on the path that uses arcsA andC.) Under
Bellman’s Principle, one would expect that the cheapest path from node1 to 2
also uses arcB, but this isn’t the case. Since the cost on arcA is $5 and the cost
on arcB is $6, the minimum cost path from node1 to node2 is actually arcA.

Denied the ability to use labelling algorithms to directly solve the nonadditive
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shortest path problem, one obvious recourse is to use “brute force.” This entails
finding the minimum time path and checking to see if it includes any tolled links.
If so, a tolled link can be removed from consideration, and the shortest path re-
calculated. If tolled links are again included in the next solution, the process can
be repeated until a “toll-free”minimum time path has been found or the inclusion
and exclusion of all tolled links in the network have been considered. Obviously,
if the number of tolled links is denoted byT , this method can generate as many as
2T paths, some of which include tolled links that have already been considered in
prior iterations. A slightly more elegant version would keep track of which tolled
links have been found so far, and would remove combinations of these arcs from
further consideration. However, this is computationally burdensome as well. A
third approach to solving this problem is to formulate it as a integer program and
employ branch and bound techniques.

In this paper, we show that a relatively simple and efficient option exists.
Though this method still has non-polynomial worst-case complexity, in practice it
appears to find the optimal solution to the nonadditive minimum cost path problem
in a small number of iterations. The approach consists of solving a succession of
shortest path problems, each having a single toll constraint inherited from the pre-
vious problem. Section 2 contains a formulation of the problem and a description
of this solution approach, which we call the Inherited Constraint Algorithm, and
the third section presents a technique for improving the algorithm’s performance.
Section 4 discusses an efficient method for solving the subproblems, and the fifth
section provides initial numerical results. Conclusions and directions for further
research are presented in Section 6.

INHERITED CONSTRAINT ALGORITHM

Consider anetwork, G, comprised of a finite set ofnodes, N = f1; : : : ; mg, and
a finite set of (directed)arcs (or links),A = f1; : : : ; ng. Thenode-arc incidence
matrix for G, which is denoted byA, has componentsaij defined as follows:
aij = 1 if link j is directed out of nodei, aij = �1 if link j is directed into node
i, andaij = 0 otherwise. On this network there is a single origin node,O, and a
single destination node,D. We letbO = 1, bD = �1, andbi = 0; i 2 N�fO;Dg.
Thus, anyx that satisfies:

Ax = b

x 2 f0; 1gn
(1)

corresponds to apathfromO toD.
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In the traditional formulation of the problem one assumes that thecoston all
arcs is known and given byc = (cj : j = 1; : : : ; n), and that path costs are
additive. Thus, the cost on a path corresponding tox is given by:

C(x) = c>x (2)

and theminimum cost path problemcan be formulated as:

minx c>x

s.t. Ax = b

x � 0
(3)

where the constraintx 2 f0; 1gn can be replaced by the constraintx � 0 because
of the total unimodularity ofA.

In this paper, we assume that the cost on a path corresponding tox is given by:

C(x) = v
�
t>x

�
+ �>x (4)

wheret 2 Rn
+ and� 2 Rn

+ are the vectors oftimesandtolls, respectively, on the
arcs, andv : R+ ! R+ denotes thevalue of timefunction.

The problem we want to solve is thus:

minx v(t>x) + �>x

s.t. Ax = b

x 2 f0; 1gn:
(5)

Obviously, whenv(x) = t>x this is a simple minimum cost path problem with a
composite cost vectorc = t+� . We want to consider the case whenv is nonlinear.

For the moment, let us act as if we have a solution to (5), which we denote by
x�. It is clear thatx� is a solution of (5) if and only if it is also a solution of:

minx v
�
t>x

�

s.t. Ax = b

�>x = �>x�

x 2 f0; 1gn:

(6)

This further implies thatx� is a solution of (5) if and only if it is also a solution
of:

minx t>x

s.t. Ax = b

�>x = �>x�

x 2 f0; 1gn

(7)
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sincev is strictly increasing.
Of course, we do not have a solution to (5) and if we did we would not be

interested in (7). It should be intuitively clear, however, that educated guesses for
x� might allow us to move towards an optimal solution.

To see how, we letZ denote the value of�>x�, the toll on the optimal path.
Hence our problem becomes:

minx t>x

s.t. Ax = b

�>x = Z

x 2 f0; 1gn:

(8)

Time
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Figure 2: The Initial Solution

With respect to updatingZ, we wish to begin with apessimisticvalue to preclude
overlooking any potential solutions. We can accomplish this by initially ignoring
the toll constraint and solving the resulting minimum time path problem. This
solution, which we denote byx0, is illustrated in Figure 2. Sincex0 is the min-
imum time path, there are no feasible solutions to the left ofx0. In addition, all
solutions above and to the right ofx0 are dominated byx0 in the sense that they
either have a larger time (and hence a larger composite cost) or a larger toll (again,
and a larger composite cost). Thus, we need only consider solutions below and to
the right ofx0.
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In order to generate such solutions we consider the following problem:

minx t>x

s.t. Ax = b

�>x < Zj

x 2 f0; 1gn:

(9)

That is, we want to look for a series of solutions that have tolls less than that on
x0 (since we know that they will have a larger time).

Time

Toll

x0

ε

CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC

Possible Locations of x1

Figure 3: Updating the Constraint

Of course, we cannot incorporate a strict inequality constraint directly. In-
stead, as illustrated in Figure 3 (forj = 0), we solve:

minx t>x

s.t. Ax = b

�>x � Zj � �

x 2 f0; 1gn:

(10)

The process iterates as shown in Figure 4, producing minimum time paths un-
der increasingly strict toll constraints inherited from the previous iteration; each
solution is said to “dominate” other paths in the restricted search space with re-
spect to time. When a path is found having a toll equal to the minimum toll on
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Time

Toll

x0

x1

x2

x3

Figure 4: ICA Iterations

the network, we can terminate the algorithm and evaluate the objective function
in problem (5) using each of the candidates in order to select the optimal solution.
We use CSPj to refer to the constrained problem given in (10), and let ICA denote
the iterative solution process.

In practice, we can of course select an� less than the minimum difference in
tolls on the network (e.g., less than a penny), and hence can ensure that the search
method does not overlook a potential solution when solving any of the constrained
problems.

IMPROVING THE PERFORMANCE

It is possible that even the implicit enumeration of dominant paths described above
can take a great many iterations. In many cases, however, we can dramatically
improve the method’s performance by recognizing that it may be possible to ter-
minate the search early. This entails constructing the set of time–toll pairs that
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have the same composite cost asxj, which we denote by:

I(xj) = f(a; b) : v(a) + b = v
�
t>xj

�
+ �>xj; a � t>xj; b � �>y0g (11)

where�>y0 is the minimum toll on all paths between the origin and destination.
Since the minimum toll may not be zero, we findy0 by solving the following

minimum toll path problem:

minx �>x

s.t. Ax = b

x � 0:
(12)

Next, lett(xj) denote the point inI(xj) with the maximum time. That is, let:

t(xj) = maxfa : (a; b) 2 I(xj) for somebg: (13)

Time

Toll

0

Set of points with the same
composite cost as x0 

Solutions
dominated
by  x0 that
can be used
to terminate

Solutions dominated
by  x0

Solutions that
dominate  x0

t ( x  )0

y0

x0

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

Figure 5: Terminating the Algorithm

It follows that if we obtain a solutionxj+1 with t>xj+1 � t(xj) we can termi-
nate the algorithm (sincexj+1 dominates all subsequent candidate solutions with
respect to time). This is illustrated in Figure 5 forx0.
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Of course, it may be the case that this technique does not reduce the search
space at all. Specifically, consider what happens ift(xj) � t>y0, as shown in
Figure 6. It turns out that in such cases it may be possible to work fromy0 to
reduce the search space.

To do so, we formulate the “mirror” problem to CSPj, where now we repeat-
edly solve a minimum toll problem subject to a time constraint. For all networks
of practical interest, we cana priori select a lower bound for the smallest dif-
ference in path times and hence select an appropriate value of� to use in our
(time-)constrained shortest path problems.

With respect to bounding this search, we can again construct the set of time-
toll pairs with the same composite cost as the current solution,yk:

J(yk) = f(a; b) : v(a) + b = v
�
t>yk

�
+ �>yk; a � t>x0; b � y0g (14)

and define a corresponding termination criterion,�(yk), where

�(yk) = maxfa : (a; b) 2 J(yk) for someag: (15)

We must note that, at any given iteration, the search space may not be reduced
by either method (that is, all subsequent solutions may lie below and to the “left”
of the inner composite cost curve). Therefore, the worst-case complexity of the
inherited constraint algorithm equals that of the brute-force method (NP-hard).

In summary, the algorithm we propose for solving the nonadditive minimum
cost path problem is as follows:
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Figure 6: Developing a Termination Criterion Usingy0

Initialize:

Setj = k = 0.

Findy0 andx0. If �>x0 = �>y0, STOP –x0 is the optimal solution.

Iterate:

while ( MORE2DO )f

if ( v(t>xj) + �>xj � v(t>yk) + �>yk ) f

Setj = j + 1

SetZj = �>xj�1. If (Zj == �>y0) f MORE2DO= false; break;g

Solve the subproblem CSPj for xj

g

elsef

Setk = k + 1

SetW k = t>yk�1. If (W k == t>x0) f MORE2DO= false; break;g
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Solve the mirror subproblem foryk

g

if ( t>xj+1 � t(xj) or �>yk+1 � �(yk) ) “MORE2DO” = false;

g

Select optimal solution:
Calculate composite cost for each of paths enumerated and select the minimum cost path.

SOLVING THE SUBPROBLEM

Problem (10) is a simple example of a constrained shortest path (CSP) problem
[see (5) for a classification of general CSP problems].

Unfortunately, the presence of the toll constraint destroys the integrality prop-
erty of the constraint matrix, thus problem (10) must explicitly include the integer-
value constraintx 2 f0; 1gn. To solve this problem, then, we turn to Lagrangian
Relaxation [see (6), (7), and (8), along with Handler and Zang (9)].

Consider the following relaxation of the problem given in (10):

minx t>x+ �[�>x� (Zj � �)]
s.t. Ax = b

x � 0
(16)

Here the toll constraint is introduced into the objective function with a multiplier,
�, which essentially penalizes violations of the constraint. It is well-known that,
for any value of�, the solution to this type of relaxed problem serves as a lower
bound to the objective function value in the original problem. Our goal, then, is
to find the� and corresponding pathx that provide the best lower bound on the
optimal solution (ideally, the optimal path itself). Rewritten one last time, the
problem we wish to solve is:

max� minx (t + ��)>x� �(Zj � �)
s.t. Ax = b

x � 0
(17)

While not guaranteed to be the optimal solution of the corresponding CSPj ,
the solution to this maximization problem is relatively easy to find since problem
(17) is concave in� and� is a scalar. Thus we can find the optimal value of� using
a one-dimensional line search algorithm, albeit one that does not use derivatives
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since (17) is piecewise-linear. Furthermore, for each test value of� andZj fixed,
(17) is a simple linear programming problem that can be solved in a variety of
ways [see (13)].

In practice, we can apply the relaxation technique using an “appropriate” value
for the interval of uncertainty. A very small interval would ensure that we find
a close approximation to the optimal value of�, however, a larger tolerance is
desirable from the point of reducing the number of shortest path calls made for
each test�.

Regardless of the size of the uncertainty interval chosen, some computational
savings will result from using the value of� found in the previous iteration to
serve as lower bound for the line search in the current iteration. Furthermore, we
can find an upper bound for the line search interval by solving the minimum toll
path problem and solving the maximization problem using the minimum toll as
the constraint. (Should the algorithm begin to work the mirror problem, a new
upper bound must be found.)

NUMERICAL EXAMPLES

We implemented the inherited constraint algorithm in C and, using the network
shown in Figure 7, examined the performance of the solution approach. Our
choice of one-dimensional optimization algorithm is the Golden Section Method;
we use a binary-heap implementation of Dijkstra’s algorithm [(10), (11), (12)] to
solve the related shortest path subproblems. The uncertainty interval used when
maximizing the Lagrangian is 0.0001.

The test network represents the New Jersey highway system, and is comprised
of 321 nodes and 1128 arcs (including 110 tolled arcs). We used a value of time
function v(t) = 10t2; the time cost associated with each arc is a function of its
length and assumed travel speed. Table 1 lists the categories of roads and the
travel speed assumed for each type.

Twenty representative “trips” on the network with varying origins and desti-
nations were selected for study. Table 2 lists these origin-destination (OD) pairs,
along with the cost on the corresponding best nonadditive path.

For each of these OD pairs, we first solved the nonadditive shortest path prob-
lem using the Lagrangian relaxation heuristic to solve the CSPs. In all but one
of the cases (i.e., OD Pair 15), the minimum time path was determined to be the
optimal path overall, which is not surprising given the value of time function used.
Table 3 provides a comparison of the CPU time and number of CSPs and shortest
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Figure 7: New Jersey Network

12



Type Number Speed (mph)
Ordinary highway 670 30
Divided highway 190 40
Freeway 158 50
Toll road 104 50
Toll bridge or tunnel 6 25

Table 1: Road Types and Assumed Speeds

path calls required to find the optimum path with and without invoking the early
termination criteria.

We then used ak-best path method (14) to generate paths until the minimum
time-minimum toll space had been spanned or the 200th best path was calculated.
Using the number of shortest path calls as the metric, Table 4 contrasts the perfor-
mance of the relaxation heuristic and thek-best path method.

Based on these initial results, the successive relaxation method appears to be
very efficient, with or without invoking the early termination mechanism. At most
175 shortest path calls were required to solve each problem vs the worst case of
2110 such calculations. For most of the test problems, relatively few shortest path
calculations were done and, using a Silicon Graphics Indy workstation with a
MIPS R5000 CPU running at 180 MHz and 96 Mb of memory, less than 0.3
seconds of CPU time was needed with the early termination method invoked.

In contrast, when thek-best path algorithm was used, the results were mixed.
In some cases (i.e., OD pairs 6, 11, 13 and 14), only 2 shortest path calls were
required. (The ICA could be reconfigured to find both the minimum time and
minimum toll paths before beginning any line searches, which would yield the
same result.) However, several hundreds — if not thousands — of shortest path
calls were completed in most of the cases tested without spanning the time-toll
space and hence ensuring that the optimum path was among the paths calculated.
(Note: a> next to the number of shortest path calls indicates that thek-best
method was terminated unsuccessfully.)

CONCLUSION AND FUTURE RESEARCH

In this paper we have demonstrated that the inherited constraint algorithm (ICA)
can efficiently solve the minimum cost path problem when path costs include both
time and tolls and the valuation of travel time is nonlinear.
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OD Dollar Cost
Pair Origin Destination on Best Path
1 Paramus Atlantic City 133.21
2 Princeton Cape May 149.01
3 Tewksbury Atlantic City 144.73
4 Camden Jersey City 61.31
5 Del. Memorial Bridge Bayonne 95.85
6 Princeton Vernon 57.98
7 Princeton Atlantic City 81.95
8 Princeton Jersey City 22.64
9 Newark Pt. Pleasant 28.48
10 Newark Lambertville 34.72
11 Gum Tree Corner Camden 31.44
12 Newark Long Branch 24.77
13 Gum Tree Corner Atlantic City 60.69
14 Princeton Morristown 14.50
15 Paramus Trenton 42.82
16 Paramus Pt. Pleasant 39.64
17 New York City Atlantic City 135.39
18 New York City Trenton 39.16
19 Princeton Meadowlands 23.59
20 Del Mem. Bridge Princeton 55.21

Table 2: OD Pairs Tested

Much work remains to be done, however. Directions for future research in-
clude further validation and refinement of the algorithm, and possible extensions
to the nonadditive path costs model.

Using branch and bound techniques, we wish to validate the convergence of
the ICA on larger, more realistic networks (e.g., derived from TIGER files). Sec-
ond, we wish to address the issue ofa priori determination of the interval of
uncertainty used in the 1-D optimization for a given OD pair. In addition, it may
be that the value of time function,v, is piecewise-linear (or is well-approximated
using a piecewise-linear function). We wish to consider alternative algorithms for
solving the nonadditive problem in this context.

Other remaining research objectives include providing an example that real-
izes the worst-case, non-polynomial complexity of the nonadditive shortest path
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problem and laying the groundwork for more efficient implementation of the in-
herited constraint algorithm. An exhaustive performance evaluation is required
using additional networks.

Finally, we wish to extend the work presented in this paper by incorporating
the solution algorithm into a [static] model of traffic equilibrium.
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OD w/ ET w/o ET
Pair CPU Time (secs) CSPs SPsCPU Time (secs) CSPs SPs
1 0.25 2 75 0.57 6 175
2 0.17 1 44 0.24 2 63
3 0.17 1 45 0.26 2 64
4 0.24 2 69 0.38 2 113
5 0.16 1 49 0.31 3 97
6 0.09 0 25 0.09 0 25
7 0.17 1 45 0.35 4 95
8 0.13 1 47 0.26 3 91
9 0.13 1 50 0.25 3 100
10 0.10 1 40 0.10 1 40
11 0.03 0 25 0.03 0 25
12 0.12 1 51 0.24 3 102
13 0.04 0 25 0.04 0 25
14 0.04 0 25 0.04 0 25
15 0.15 2 65 0.15 2 65
16 0.12 1 50 0.33 4 125
17 0.26 2 75 0.61 6 175
18 0.10 1 47 0.20 3 91
19 0.10 1 45 0.14 2 64
20 0.07 1 40 0.07 1 40

Table 3: Effect of Early Termination
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OD Number of Shortest Path Calls
Pair Relaxation Heuristic k-Best Algorithm
1 175 >5188
2 63 >5017
3 64 >4390
4 113 >5002
5 97 >5261
6 25 2
7 95 >3746
8 91 >2998
9 100 >3246
10 40 >2244
11 25 2
12 102 1815
13 25 2
14 25 2
15 65 >3775
16 125 >4324
17 175 >5141
18 91 >3669
19 64 >2647
20 40 >3746

Table 4: Comparison of Heuristic andk-best Method
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